Mathematics 1 Deneme Sınavı Sorusu #1357117

On which interval is the function f(x)=x3-12x increasing?


(-∞, -2)U(0,2)

(-∞, -3)U(3,∞)

(-∞, -4)U(4,∞)

(-∞, -1)U(2,∞)

(-∞, -2)U(2,∞)


Yanıt Açıklaması:

A function is increasing where its first derivative is positive. Thus, we have to find the intervals where the first derivative of function is positive.

f(x)=x3-12x

f'(x)=3x2-12

So the function is increasing where f'(x)>0

Namely:

3x2-12>0

3x2>12

x2>4

This is possible when x>2 and when x<-2

Thus the function is increasing in the interval (-∞, -2)U(2,∞)

Yorumlar
  • 0 Yorum