aof.sorular.net
Mathematics 1
Mathematics 1 Deneme Sınavı
Mathematics 1 Deneme Sınavı Sorusu #1357117
Mathematics 1 Deneme Sınavı Sorusu #1357117
On which interval is the function f(x)=x3-12x increasing?
(-∞, -2)U(0,2) |
(-∞, -3)U(3,∞) |
(-∞, -4)U(4,∞) |
(-∞, -1)U(2,∞) |
(-∞, -2)U(2,∞) |
Yanıt Açıklaması:
A function is increasing where its first derivative is positive. Thus, we have to find the intervals where the first derivative of function is positive.
f(x)=x3-12x
f'(x)=3x2-12
So the function is increasing where f'(x)>0
Namely:
3x2-12>0
3x2>12
x2>4
This is possible when x>2 and when x<-2
Thus the function is increasing in the interval (-∞, -2)U(2,∞)
Yorumlar
- 0 Yorum