Mathematics 1 Deneme Sınavı Sorusu #1233100

Given that z=(x+y)2, y=u3 x=u2-u find the partial derivative dz/du


9u5-12u4+5u3+6u2-2u

9u5+12u4-5u3-6u2+2u

6u5-5u3-6u2+2u

6u5+5u4-5u3-6u2+2u

u5+12u4-u3-6u2+2


Yanıt Açıklaması:

dz/du=(dz/dx)*(dx/du)+(dz/dy)*(dy/du)

Since z=(x+y)2, dz/dx=2x+2y and dz/dy=2x+2y 

Since y=u3, dy/du=3u2

x=u2-u, dx/du=2u-1

By substitution

dz/du=(2x+2y)(2u-1)+(2x+2y)3u2=(2x+3y)(3u2+2u-1)=(2(u2-u)+3u3)(3u2+2u-1)=(2u2-2u+3u3)(3u2+2u-1)=9u5+12u4-5u3-6u2+2u

Yorumlar
  • 0 Yorum